
torch_radon
Release 0.0.1

Matteo Ronchetti

May 18, 2022





GETTING STARTED

1 Google Colab 3

2 Install Locally 5

3 Radon Projections 7

4 Shearlet Transform 11

5 Solvers 13

6 Indices and tables 17

Index 19

i



ii



torch_radon, Release 0.0.1

Torch Radon is a fast CUDA implementation of transforms needed for working with computed tomography data in
Pytorch. It allows the training of end-to-end models that takes sinograms as inputs and produce images as output.

Main features:

• All operations work directly on Pytorch GPU tensors.

• Forward and back projections are differentiable and integrated with Pytorch .backward().

• Up to 50x faster than Astra Toolbox.

• Supports half precision and can used togheter with amp for faster training.

Projection types:

• Parallel Beam

• Fan Beam

GETTING STARTED 1



torch_radon, Release 0.0.1

2 GETTING STARTED



CHAPTER

ONE

GOOGLE COLAB

The easiest way to start experimenting with the Torch Radon library is to use Google Colab. You can find a sample
notebook here.

3

https://colab.research.google.com/drive/10GdKHk_6346aR4jl5VjPPAod1gTEsza9?usp=sharing


torch_radon, Release 0.0.1

4 Chapter 1. Google Colab



CHAPTER

TWO

INSTALL LOCALLY

2.1 Precompiled Package

If you are running Linux you can install Torch Radon by running:

wget -qO- https://raw.githubusercontent.com/matteo-ronchetti/torch-radon/master/auto_
→˓install.py | python -

2.2 Docker Image

Docker images with PyTorch CUDA and Torch Radon are available here.

docker pull matteoronchetti/torch-radon

To use the GPU in docker you need to use nvidia-docker.

2.3 Compile from Source

You need to have CUDA and PyTorch installed, then run:

git clone https://github.com/matteo-ronchetti/torch-radon.git
cd torch-radon
python setup.py install

If you encounter any problem please contact the author or open an issue.

5

https://hub.docker.com/repository/docker/matteoronchetti/torch-radon
https://github.com/NVIDIA/nvidia-docker
https://developer.nvidia.com/cuda-toolkit
https://pytorch.org/get-started/locally/


torch_radon, Release 0.0.1

6 Chapter 2. Install Locally



CHAPTER

THREE

RADON PROJECTIONS

3.1 Parallel Beam

class torch_radon.Radon(resolution: int, angles, det_count=- 1, det_spacing=1.0, clip_to_circle=False)

Class that implements Radon projection for the Parallel Beam geometry.

Parameters

• resolution – The resolution of the input images.

• angles – Array containing the list of measuring angles. Can be a Numpy array or a PyTorch
tensor.

• det_count – Number of rays that will be projected. By default it is = resolution

• det_spacing – Distance between two contiguous rays.

• clip_to_circle – If True both forward and backward projection will be restricted to pixels
inside the circle (highlighted in cyan).

Note: Currently only support resolutions which are multiples of 16.

forward(self, x)
Radon forward projection.

Parameters x – PyTorch GPU tensor with shape (𝑑1, . . . , 𝑑𝑛, 𝑟, 𝑟) where 𝑟 is the resolution
given to the constructor of this class.

Returns PyTorch GPU tensor containing sinograms. Has shape
(𝑑1, . . . , 𝑑𝑛, 𝑙𝑒𝑛(𝑎𝑛𝑔𝑙𝑒𝑠), 𝑑𝑒𝑡_𝑐𝑜𝑢𝑛𝑡).

backprojection(self, sinogram)
Radon backward projection.

7

https://docs.python.org/3/library/functions.html#int


torch_radon, Release 0.0.1

Parameters sinogram – PyTorch GPU tensor containing sinograms with shape
(𝑑1, . . . , 𝑑𝑛, 𝑙𝑒𝑛(𝑎𝑛𝑔𝑙𝑒𝑠), 𝑑𝑒𝑡_𝑐𝑜𝑢𝑛𝑡).

Returns PyTorch GPU tensor with shape (𝑑1, . . . , 𝑑𝑛, 𝑟, 𝑟) where 𝑟 is the resolution given to
the constructor of this class.

backward(self, sinogram)
Same as backprojection

3.2 Fanbeam

class torch_radon.RadonFanbeam(resolution: int, angles, source_distance: float, det_distance: float = - 1,
det_count: int = - 1, det_spacing: float = - 1, clip_to_circle=False)

Class that implements Radon projection for the Fanbeam geometry.

Parameters

• resolution – The resolution of the input images.

• angles – Array containing the list of measuring angles. Can be a Numpy array or a PyTorch
tensor.

• source_distance – Distance between the source of rays and the center of the image.

• det_distance – Distance between the detector plane and the center of the image. By default
it is = source_distance.

• det_count – Number of rays that will be projected. By default it is = resolution.

• det_spacing – Distance between two contiguous rays.

• clip_to_circle – If True both forward and backward projection will be restricted to pixels
inside the circle (highlighted in cyan).

Note: Currently only support resolutions which are multiples of 16.

forward(self, x)
Radon forward projection.

Parameters x – PyTorch GPU tensor with shape (𝑑1, . . . , 𝑑𝑛, 𝑟, 𝑟) where 𝑟 is the resolution
given to the constructor of this class.

Returns PyTorch GPU tensor containing sinograms. Has shape
(𝑑1, . . . , 𝑑𝑛, 𝑙𝑒𝑛(𝑎𝑛𝑔𝑙𝑒𝑠), 𝑑𝑒𝑡_𝑐𝑜𝑢𝑛𝑡).

8 Chapter 3. Radon Projections

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float


torch_radon, Release 0.0.1

backprojection(self, sinogram)
Radon backward projection.

Parameters sinogram – PyTorch GPU tensor containing sinograms with shape
(𝑑1, . . . , 𝑑𝑛, 𝑙𝑒𝑛(𝑎𝑛𝑔𝑙𝑒𝑠), 𝑑𝑒𝑡_𝑐𝑜𝑢𝑛𝑡).

Returns PyTorch GPU tensor with shape (𝑑1, . . . , 𝑑𝑛, 𝑟, 𝑟) where 𝑟 is the resolution given to
the constructor of this class.

backward(self, sinogram)
Same as backprojection

3.2. Fanbeam 9



torch_radon, Release 0.0.1

10 Chapter 3. Radon Projections



CHAPTER

FOUR

SHEARLET TRANSFORM

class torch_radon.shearlet.ShearletTransform(width, height, alphas, cache=None)
Implementation of Alpha-Shearlet transform based on https://github.com/dedale-fet/alpha-transform/tree/
master/alpha_transform.

Once the shearlet spectrograms are computed all the computations are done on the GPU.

Parameters

• width – Width of the images

• height – Height of the images

• alphas – List of alpha coefficients that will be used to generate shearlets

• cache – If specified it should be a path to a directory that will be used to cache shearlet
coefficients in order to avoid recomputing them at each instantiation of this class.

Note: Support both float and double precision.

forward(self, x)
Do shearlet transform of a batch of images.

Parameters x – PyTorch GPU tensor with shape (𝑑1, . . . , 𝑑𝑛, ℎ, 𝑤).

Returns PyTorch GPU tensor containing shearlet coefficients. Has shape (𝑑1, . . . , 𝑑𝑛,

backward(self, cs)
Do inverse shearlet transform.

Parameters cs – PyTorch GPU tensor containing shearlet coefficients, with shape (𝑑1, . . . , 𝑑𝑛,

11

https://github.com/dedale-fet/alpha-transform/tree/master/alpha_transform
https://github.com/dedale-fet/alpha-transform/tree/master/alpha_transform


torch_radon, Release 0.0.1

12 Chapter 4. Shearlet Transform



CHAPTER

FIVE

SOLVERS

The module torch_radon.solvers contains implementations of algorithms that can be used to solve tomographic
reconstructions problems.

5.1 Landweber Iteration

Returnsclass torch_radon.solvers.Landweber(operator, projection=None, grad=False)

Class that implements Landweber iteration to solve min𝑥∈𝐶 ‖𝐴𝑥− 𝑦‖22 (see Wikipedia page).

The iteration used is 𝑥𝑛+1 = 𝒫𝐶(𝑥− 𝛼𝐴𝑇𝐴𝑥𝑛) where 𝒫𝐶 is the projection onto 𝐶.

Parameters

• operator – Instance of a class that implements products 𝐴𝑥 (operator.forward(x)) and
𝐴𝑇 𝑦 (operator.backward(y)).

• projection – Function that implements 𝒫𝐶(·), if not specified no projection is used.

• grad – If true gradient will be enabled, more memory will be used but it will be possible to
backpropagate.

estimate_alpha(img_size, device, n_iter=50, batch_size=8)
Use power iteration on 𝐴𝑇𝐴 to estimate the maximum step size that still guarantees convergence.

Note: Because this computation is not exact it is advised to use a value of alpha lower that the one estimated
by this method (for example multiplying the estimate by 0.95).

Parameters

• img_size – Size of the image

• device – GPU device that will be used for computation

• n_iter – Number of iterations

• batch_size – Number of vectors used in the power iteration.

Returns Estimated value for alpha

run(x_zero, y, alpha, iterations=100, callback=None)
Execute Landweber iterations.

Parameters

13

https://en.wikipedia.org/wiki/Landweber_iteration


torch_radon, Release 0.0.1

• x_zero – Initial solution guess used as a starting point for the iteration

• y – Value of y in min𝑥∈𝐶 ‖𝐴𝑥− 𝑦‖22
• alpha – Step size, can be estimated using estimate_alpha

• iterations – Number of iterations

• callback – Optional function that will be called at each iteration with 𝑥𝑛 as argument.
Values returned by callback will be stored in a list and returned together with the com-
puted solution

Returns If callback is specified returns x, values where x is the solution computed by the
Landweber iteration and values is the list of values returned by callback at each iteration.
If callback is not specified returns only x

5.2 Conjugate Gradient

torch_radon.solvers.cg(forward, x, y, callback=None, max_iter=500, tol=1e-05)
Implements Conjugate Gradient algorithm for solving min𝑥 ‖𝐴𝑥− 𝑦‖22.

Note: For conjugate gradient to work the matrix 𝐴 must be symmetric positive definite. Otherwise use other
solvers.

Parameters

• forward – function that implements products 𝐴𝑥 (forward(x)).

• x – Initial solution guess used as a starting point for the iteration

• y – Value of y in min𝑥∈𝐶 ‖𝐴𝑥− 𝑦‖22
• callback – Optional function that will be called at each iteration with 𝑥𝑛 and the residual

as arguments. Values returned by callback will be stored in a list and returned together
with the computed solution.

• max_iter – Maximum number of iterations.

• tol – Algorithm is stopped when ‖𝐴𝑥𝑛−𝑦‖
‖𝑦‖ ≤ tol

Returns If callback is specified returns x, values where x is the solution computed by the
Landweber iteration and values is the list of values returned by callback at each iteration.
If callback is not specified returns only x.

torch_radon.solvers.cgne(operator, x, y, callback=None, max_iter=5000, tol=1e-05)
Implements Conjugate Gradient on the Normal Equations, an algorithm for solving min𝑥 ‖𝐴𝑥− 𝑦‖22.

Parameters

• operator – Instance of a class that implements products 𝐴𝑥 (operator.forward(x)) and
𝐴𝑇 𝑦 (operator.backward(y)).

• x – Initial solution guess used as a starting point for the iteration :param y: Value of y in
min𝑥∈𝐶 ‖𝐴𝑥− 𝑦‖22

• callback – Optional function that will be called at each iteration with 𝑥𝑛 as argument.
Values returned by callbackwill be stored in a list and returned together with the computed
solution

14 Chapter 5. Solvers



torch_radon, Release 0.0.1

• max_iter – Maximum number of iterations

• tol – Algorithm is stopped when ‖𝑠‖
‖𝑦‖ ≤ tol

Returns If callback is specified returns x, values where x is the solution computed by the
Landweber iteration and values is the list of values returned by callback at each iteration.
If callback is not specified returns only x

5.2. Conjugate Gradient 15



torch_radon, Release 0.0.1

16 Chapter 5. Solvers



CHAPTER

SIX

INDICES AND TABLES

• genindex

17



torch_radon, Release 0.0.1

18 Chapter 6. Indices and tables



INDEX

B
backprojection() (torch_radon.Radon method), 7
backprojection() (torch_radon.RadonFanbeam

method), 8
backward() (torch_radon.Radon method), 8
backward() (torch_radon.RadonFanbeam method), 9
backward() (torch_radon.shearlet.ShearletTransform

method), 11

C
cg() (in module torch_radon.solvers), 14
cgne() (in module torch_radon.solvers), 14

E
estimate_alpha() (torch_radon.solvers.Landweber

method), 13

F
forward() (torch_radon.Radon method), 7
forward() (torch_radon.RadonFanbeam method), 8
forward() (torch_radon.shearlet.ShearletTransform

method), 11

L
Landweber (class in torch_radon.solvers), 13

R
Radon (class in torch_radon), 7
RadonFanbeam (class in torch_radon), 8
run() (torch_radon.solvers.Landweber method), 13

S
ShearletTransform (class in torch_radon.shearlet), 11

19


	Google Colab
	Install Locally
	Precompiled Package
	Docker Image
	Compile from Source

	Radon Projections
	Parallel Beam
	Fanbeam

	Shearlet Transform
	Solvers
	Landweber Iteration
	Conjugate Gradient

	Indices and tables
	Index

