

Torch Radon Documentation

Torch Radon is a fast CUDA implementation of transforms needed for
working with computed tomography data in Pytorch. It allows the training of end-to-end models that takes sinograms as inputs and produce images as output.

	Main features:
	
	All operations work directly on Pytorch GPU tensors.

	Forward and back projections are differentiable and integrated with Pytorch .backward().

	Up to 50x faster than Astra Toolbox.

	Supports half precision and can used togheter with amp for faster training.

	Projection types:
	
	Parallel Beam

	Fan Beam

Getting Started

	Google Colab

	Install Locally

Package reference

	Radon Projections

	Shearlet Transform

	Solvers

Indices and tables

	Index

Google Colab

The easiest way to start experimenting with the Torch Radon library is to use Google Colab.
You can find a sample notebook here [https://colab.research.google.com/drive/10GdKHk_6346aR4jl5VjPPAod1gTEsza9?usp=sharing].

Install Locally

Precompiled Package

If you are running Linux you can install Torch Radon by running:

wget -qO- https://raw.githubusercontent.com/matteo-ronchetti/torch-radon/master/auto_install.py | python -

Docker Image

Docker images with PyTorch CUDA and Torch Radon are available here [https://hub.docker.com/repository/docker/matteoronchetti/torch-radon].

docker pull matteoronchetti/torch-radon

To use the GPU in docker you need to use nvidia-docker [https://github.com/NVIDIA/nvidia-docker].

Compile from Source

You need to have CUDA [https://developer.nvidia.com/cuda-toolkit] and PyTorch [https://pytorch.org/get-started/locally/] installed, then run:

git clone https://github.com/matteo-ronchetti/torch-radon.git
cd torch-radon
python setup.py install

If you encounter any problem please contact the author or open an issue.

Radon Projections

Parallel Beam

	
class torch_radon.Radon(resolution: int [https://docs.python.org/3/library/functions.html#int], angles, det_count=- 1, det_spacing=1.0, clip_to_circle=False)

	

[image: ../_images/parallelbeam.svg]

Class that implements Radon projection for the Parallel Beam geometry.

	Parameters

	
	resolution – The resolution of the input images.

	angles – Array containing the list of measuring angles. Can be a Numpy array or a PyTorch tensor.

	det_count – Number of rays that will be projected. By default it is = resolution

	det_spacing – Distance between two contiguous rays.

	clip_to_circle – If True both forward and backward projection will be restricted to pixels inside the circle
(highlighted in cyan).

Note

Currently only support resolutions which are multiples of 16.

	
forward(self, x)

	Radon forward projection.

	Parameters

	x – PyTorch GPU tensor with shape \((d_1, \dots, d_n, r, r)\) where \(r\) is the resolution
given to the constructor of this class.

	Returns

	PyTorch GPU tensor containing sinograms. Has shape \((d_1, \dots, d_n, len(angles), det_count)\).

	
backprojection(self, sinogram)

	Radon backward projection.

	Parameters

	sinogram – PyTorch GPU tensor containing sinograms with shape \((d_1, \dots, d_n, len(angles), det_count)\).

	Returns

	PyTorch GPU tensor with shape \((d_1, \dots, d_n, r, r)\) where \(r\) is the resolution
given to the constructor of this class.

	
backward(self, sinogram)

	Same as backprojection

Fanbeam

	
class torch_radon.RadonFanbeam(resolution: int [https://docs.python.org/3/library/functions.html#int], angles, source_distance: float [https://docs.python.org/3/library/functions.html#float], det_distance: float [https://docs.python.org/3/library/functions.html#float] = - 1, det_count: int [https://docs.python.org/3/library/functions.html#int] = - 1, det_spacing: float [https://docs.python.org/3/library/functions.html#float] = - 1, clip_to_circle=False)

	

[image: ../_images/fanbeam.svg]

Class that implements Radon projection for the Fanbeam geometry.

	Parameters

	
	resolution – The resolution of the input images.

	angles – Array containing the list of measuring angles. Can be a Numpy array or a PyTorch tensor.

	source_distance – Distance between the source of rays and the center of the image.

	det_distance – Distance between the detector plane and the center of the image.
By default it is = source_distance.

	det_count – Number of rays that will be projected. By default it is = resolution.

	det_spacing – Distance between two contiguous rays.

	clip_to_circle – If True both forward and backward projection will be restricted to pixels inside the circle
(highlighted in cyan).

Note

Currently only support resolutions which are multiples of 16.

	
forward(self, x)

	Radon forward projection.

	Parameters

	x – PyTorch GPU tensor with shape \((d_1, \dots, d_n, r, r)\) where \(r\) is the resolution
given to the constructor of this class.

	Returns

	PyTorch GPU tensor containing sinograms. Has shape \((d_1, \dots, d_n, len(angles), det_count)\).

	
backprojection(self, sinogram)

	Radon backward projection.

	Parameters

	sinogram – PyTorch GPU tensor containing sinograms with shape \((d_1, \dots, d_n, len(angles), det_count)\).

	Returns

	PyTorch GPU tensor with shape \((d_1, \dots, d_n, r, r)\) where \(r\) is the resolution
given to the constructor of this class.

	
backward(self, sinogram)

	Same as backprojection

Shearlet Transform

	
class torch_radon.shearlet.ShearletTransform(width, height, alphas, cache=None)

	Implementation of Alpha-Shearlet transform based on https://github.com/dedale-fet/alpha-transform/tree/master/alpha_transform.

Once the shearlet spectrograms are computed all the computations are done on the GPU.

	Parameters

	
	width – Width of the images

	height – Height of the images

	alphas – List of alpha coefficients that will be used to generate shearlets

	cache – If specified it should be a path to a directory that will be used to cache shearlet coefficients in
order to avoid recomputing them at each instantiation of this class.

Note

Support both float and double precision.

	
forward(self, x)

	Do shearlet transform of a batch of images.

	Parameters

	x – PyTorch GPU tensor with shape \((d_1, \dots, d_n, h, w)\).

	Returns

	PyTorch GPU tensor containing shearlet coefficients.
Has shape \((d_1, \dots, d_n, \text{n_shearlets}, h, w)\).

	
backward(self, cs)

	Do inverse shearlet transform.

	Parameters

	cs – PyTorch GPU tensor containing shearlet coefficients,
with shape \((d_1, \dots, d_n, \text{n_shearlets}, h, w)\).

	Returns

	PyTorch GPU tensor containing reconstructed images.
Has shape \((d_1, \dots, d_n, h, w)\).

Solvers

The module torch_radon.solvers contains implementations of algorithms that can be used to solve
tomographic reconstructions problems.

Landweber Iteration

	
class torch_radon.solvers.Landweber(operator, projection=None, grad=False)

	Class that implements Landweber iteration to solve \(\min_{x \in C} \|Ax-y\|_2^2\)
(see Wikipedia page [https://en.wikipedia.org/wiki/Landweber_iteration]).

The iteration used is \(x_{n+1} = \mathcal{P}_C(x - \alpha A^T A x_n)\) where \(\mathcal{P}_C\) is the
projection onto \(C\).

	Parameters

	
	operator – Instance of a class that implements products \(A x\) (operator.forward(x)) and \(A^T y\)
(operator.backward(y)).

	projection – Function that implements \(\mathcal{P}_C(\cdot)\), if not specified no projection is used.

	grad – If true gradient will be enabled, more memory will be used but it will be possible to backpropagate.

	
estimate_alpha(img_size, device, n_iter=50, batch_size=8)

	Use power iteration on \(A^T A\) to estimate the maximum step size that still guarantees convergence.

Note

Because this computation is not exact it is advised to use a value of alpha lower that the one estimated by
this method (for example multiplying the estimate by 0.95).

	Parameters

	
	img_size – Size of the image

	device – GPU device that will be used for computation

	n_iter – Number of iterations

	batch_size – Number of vectors used in the power iteration.

	Returns

	Estimated value for alpha

	
run(x_zero, y, alpha, iterations=100, callback=None)

	Execute Landweber iterations.

	Parameters

	
	x_zero – Initial solution guess used as a starting point for the iteration

	y – Value of y in \(\min_{x \in C} \|Ax-y\|_2^2\)

	alpha – Step size, can be estimated using estimate_alpha

	iterations – Number of iterations

	callback – Optional function that will be called at each iteration with \(x_n\) as argument.
Values returned by callback will be stored in a list and returned together with the computed solution

	Returns

	If callback is specified returns x, values where x is the solution computed by the
Landweber iteration and values is the list of values returned by callback at each iteration. If
callback is not specified returns only x

Conjugate Gradient

	
torch_radon.solvers.cg(forward, x, y, callback=None, max_iter=500, tol=1e-05)

	Implements Conjugate Gradient algorithm for solving \(\min_x \|Ax-y\|_2^2\).

Note

For conjugate gradient to work the matrix \(A\) must be symmetric positive definite. Otherwise use other
solvers.

	Parameters

	
	forward – function that implements products \(A x\) (forward(x)).

	x – Initial solution guess used as a starting point for the iteration

	y – Value of y in \(\min_{x \in C} \|Ax-y\|_2^2\)

	callback – Optional function that will be called at each iteration with \(x_n\) and the residual as
arguments. Values returned by callback will be stored in a list and returned together with the computed
solution.

	max_iter – Maximum number of iterations.

	tol – Algorithm is stopped when \(\frac{\| Ax_n - y \|}{\| y \|} \leq \text{tol}\)

	Returns

	If callback is specified returns x, values where x is the solution computed by the
Landweber iteration and values is the list of values returned by callback at each iteration. If
callback is not specified returns only x.

	
torch_radon.solvers.cgne(operator, x, y, callback=None, max_iter=5000, tol=1e-05)

	Implements Conjugate Gradient on the Normal Equations, an algorithm for solving \(\min_x \|Ax-y\|_2^2\).

	Parameters

	
	operator – Instance of a class that implements products \(A x\) (operator.forward(x)) and \(A^T y\)
(operator.backward(y)).

	x – Initial solution guess used as a starting point for the iteration
:param y: Value of y in \(\min_{x \in C} \|Ax-y\|_2^2\)

	callback – Optional function that will be called at each iteration with \(x_n\) as argument.
Values returned by callback will be stored in a list and returned together with the computed solution

	max_iter – Maximum number of iterations

	tol – Algorithm is stopped when \(\frac{\| s \|}{\| y \|} \leq \text{tol}\)

	Returns

	If callback is specified returns x, values where x is the solution computed by the
Landweber iteration and values is the list of values returned by callback at each iteration. If
callback is not specified returns only x

Index

 B
 | C
 | E
 | F
 | L
 | R
 | S

B

 	
 	backprojection() (torch_radon.Radon method)

 	(torch_radon.RadonFanbeam method)

 	
 	backward() (torch_radon.Radon method)

 	(torch_radon.RadonFanbeam method)

 	(torch_radon.shearlet.ShearletTransform method)

C

 	
 	cg() (in module torch_radon.solvers)

 	
 	cgne() (in module torch_radon.solvers)

E

 	
 	estimate_alpha() (torch_radon.solvers.Landweber method)

F

 	
 	forward() (torch_radon.Radon method)

 	(torch_radon.RadonFanbeam method)

 	(torch_radon.shearlet.ShearletTransform method)

L

 	
 	Landweber (class in torch_radon.solvers)

R

 	
 	Radon (class in torch_radon)

 	
 	RadonFanbeam (class in torch_radon)

 	run() (torch_radon.solvers.Landweber method)

S

 	
 	ShearletTransform (class in torch_radon.shearlet)

 nav.xhtml

 Table of Contents

 		
 Torch Radon Documentation

 		
 Google Colab

 		
 Install Locally

 		
 Precompiled Package

 		
 Docker Image

 		
 Compile from Source

 		
 Radon Projections

 		
 Parallel Beam

 		
 Fanbeam

 		
 Shearlet Transform

 		
 Solvers

 		
 Landweber Iteration

 		
 Conjugate Gradient

_static/minus.png

_static/plus.png

_static/file.png

